

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Plan for MEBT measurements in FY16

A. Shemyakin with inputs from C. Baffes and V. Scarpine PIP-II technical meeting October 27, 2015

MEBT stages

- The MEBT is proposed to be installed in several steps, determined mainly by arrival of magnets from BARC
 - MEBT –x, x=1, 2, 3 in this report corresponds to intermediate configurations with different number of magnets
 - Each configuration may have several variations of different diagnostics placement, which are referred as MEBT x-y

季 Fermilab

Assumptions for the plan

- Can start RFQ beam in pulse mode in Jan 2016
 - RFQ is RF- commissioned
 - MEBT 1-1 is ready to roll in
- No bad discoveries with beam and components
- Stop beam run in July 2016 for installation of MEBT-2
 - 4 triplets are supplied by BARC and one is re-measured in TD
 - One more bunching cavity is ready for installation
 - Kickers and additional diagnostics are ready
- In the case of further delays with RFQ, sacrifice the quantity of beam measurements for assembling MEBT-2 as soon as possible

Overall schedule

- Jan –Mar 2016 20 µs beam in MEBT-1-1
 - Main goal: characterize the beam from RFQ
 - Commission all systems
- Apr- May-2016 high-power beam in MEBT-1-2
 - Main goal: 10 kW (CW or long pulse)
 - Test the absorber prototype with H-
- Jun-Jul 2016- emittance scanner measurements in MEBT 1-3
 - Main goal: transverse phase space reconstruction
 - Prepare to analyze effect of LEBT bend installation
- Jul-Sep 2016- shutdown to install MEBT-2
 - Install the LEBT bend at the same time
- Depending on progress on each stage, the list of elements in the following stages may be slightly adjusted

MEBT 1-1

- Jan 2016 installation, Jan-Mar MEBT 1-1 run
- Goals (beam related)
 - Measure RFQ transmission and H- energy
 - Measure of transverse and longitudinal properties of a pulsed beam
 - Commission MPS
 - Characterize bunching cavity
 - In parallel, a lot of instrumentation, LLRF and other efforts
 - All beam line elements are fabricated
 - Need RFQ and bunching cavity phase-locked by mid-Jan

☼ Fermilab

List of MEBT 1-1 beam measurements

- Beam current and losses (toroids, scrapers, Faraday Cup from LEBT)
- Machine Protection System (ring pickup etc.)
- Beam trajectory (BPMs)
- Energy (Time-of-Flight monitor, BPMs)
- Bunching cavity characterization (Fast Faraday Cup, ToF)
- Transverse optics (BPMs, scrapers, donut, quad scans)
- Longitudinal optics (FFC)
- Transverse tails (scrapers)
- RFQ/LEBT tuning
- Need ring pickup, BPM, FFC electronics and software
- Possibility to test diagnostics (Wire Scanner, Diamond)

MEBT 1-2

- Mar 2016 installation, Apr- May-2016 MEBT-1-2 run
- Goal: test RFQ and MEBT in the high-power (CW) mode
 - Demonstrate 10 kW (average)
 - Test the absorber prototype with H-
- Measurements
 - CW beam scraping, MPS
 - beam tuning to fill the dump aperture
 - Irradiate the absorber prototype with ~ 5 kW H-
- Need to fabricate connections
- Need RF amplifiers in CW

Space for

absorber

MEBT 1-3

- May 2016 installation, Jun-Jul-2016 MEBT-1-3 run
- Goal: transverse phase space reconstruction
- Measurements
 - Commission the MEBT Allison scanner
 - Measure phase space and Twiss parameters
 - Optimize LEBT/RFQ
- The Allison scanner needs to be designed, fabricated, and assembled

MEBT Allison emittance scanner

MEBT 2-1

- Jul-Sep 2016- installation of MEBT 2-1 and LEBT bend
 - First two MEBT sections stay unchanged
 - Keep emittance scanner in the same position to understand possible changes due to the LEBT bend

- Add:
 - 4 triplets with BPMs, 1 bunching cavity, 2 kicker prototypes, +BPM
 - Assembly with Wire scanner and Laser wire with electron collection
- Design just started

MEBT-2 goals (FY17)

- Characterize transverse and longitudinal optics of the longer beam line, start experiments with laser wire and WCM
- Main goal: test and characterize kickers
 - First, separately, looking at the trajectory with BPMs
 - 50 Ohm powered by two 81.25 MHz CW amplifiers
 - 200 Ohm: two prototype 500V switches
 - Then, synch them and try to remove every other bunch

Possible scenario beyond FY16

- Oct Dec 2016 MEBT-2 run
 - In the middle of the run, move the emittance scanner downstream and install Wall Current Monitor (MEBT 2-2)
 - Toward the end, install prototype absorber to try bunch-bybunch separation (MEBT 2-3)
- Jan- Feb 2017 install MEBT-3 (full- length with prototypes)
- Mar Apr 2017 MEBT-3 run
 - Characterize full beam line
 - First test of differential pumping
- May Nov 2017 shutdown to install cryo, HWR, 10-MeV HEBT, and clean the MEBT downstream sections
- Jan 2018 beam through HWR

